Technical Papers

Measurement and Prediction of Heat Transfer Losses on the XMv3 Rotary Engine

Tiago J. Costa, et al., SAE Journal Article 2016-32-0033
This paper describes the method used for heat transfer measurement and prediction on the LiquidPiston XMv3 small rotary engine at its current state of development. A 1D engine model (GT-POWER) and a 3D CFD model (CONVERGE), were coupled together with the objective of quantifying the engine heat transfer losses inside the combustion chamber.

DOWNLOAD NOW

Development of the XMv3 High Efficiency Cycloidal Engine

Daniele Littera, et al., SAE Technical Paper 2015-32-0719, 2015
This paper describes development progress of LiquidPiston’s small rotary engine, the XMv3, which operates on a Spark-Ignited (SI) variant of its patented High Efficiency Hybrid Cycle (HEHC).

DOWNLOAD NOW

Development of a Small Rotary SI/CI Combustion Engine

Alexander Shkolnik, Daniele Littera, Mark Nickerson, and Nikolay Shkolnik et al., SAE Technical Paper 2014-32-0104, 2014, doi:10.4271/2014-32-0104.

This paper describes the initial development progress of small rotary internal combustion engines developed to operate on the High Efficiency Hybrid Cycle (HEHC). This innovative rotary engine architecture shows a potential indicated efficiency of 60% and brake efficiency of >50%. Two prototype ‘X’ rotary engines are discussed. The first engine is the larger X1 engine (70hp), which operates on the HEHC with compression-ignition (CI) of diesel fuel. A second engine, the XMv3, is a scaled down X engine (70cc / 3HP) which operates with spark-ignition (SI) of gasoline fuel.

DOWNLOAD NOW

High Efficiency Hybrid Cycle Engine

Nikolay Shkolnik, Alexander Shkolnik, LiquidPiston, Inc, SAE Technical Paper 2010-01-1110, 2010, doi:10.4271/2010-01-1110.

Available at SAE Website
Rotary High Efficiency Hybrid Cycle Engine

Nikolay Shkolnik, Alexander Shkolnik, LiquidPiston, Inc, SAE Technical Paper 2008-01-2448, 2008, doi:10.4271/2008-01-2448

Available at SAE Website
High Efficiency Hybrid Cycle Engine

Nikolay Shkolnik, Alexander Shkolnik, LiquidPiston, Inc, ASME Paper No. ICEF2005-1221

Available at ASME Website